
Ecology and Evolution. 2020;10:579–589.     |  579www.ecolevol.org

1  | INTRODUC TION

The genomes of organisms carry a record of the evolutionary and 
ecological forces that have shaped their populations. In principle, 
one can reconstruct the demographic history of a species from the 
genome sequences of its present-day representatives (Beichman, 
Huerta-Sanchez, & Lohmueller, 2018). These reconstructions can be 
used to answer various biological questions, such as the influence of 
climatic events on population size and structure (Miller et al., 2012), 
the timing of major events in the evolutionary history of modern 

humans (Fu et al., 2014; Li & Durbin, 2011), human impacts on wild 
animal populations (Johnson et al., 2018; Pujolar, Dalén, Hansen, & 
Madsen, 2017), and the effects of domestication (Frantz et al., 2016; 
Yu et al., 2018).

Demographic inference is rarely straightforward; there are many 
challenges in extracting the relevant historical signal from the popu-
lation of interest. A number of methods have been developed for this 
purpose, such as those based on site frequency spectra and approx-
imate Bayesian computation (reviewed by Beichman et al., 2018). 
Here, we focus on a pair of methods designed to analyze genome 
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Abstract
A common goal of population genomics and molecular ecology is to reconstruct the 
demographic history of a species of interest. A pair of powerful tools based on the 
sequentially Markovian coalescent have been developed to infer past population 
sizes using genome sequences. These methods are most useful when sequences are 
available for only a limited number of genomes and when the aim is to study ancient 
demographic events. The results of these analyses can be difficult to interpret accu-
rately, because doing so requires some understanding of their theoretical basis and 
of their sensitivity to confounding factors. In this practical review, we explain some of 
the key concepts underpinning the pairwise and multiple sequentially Markovian co-
alescent methods (PSMC and MSMC, respectively). We relate these concepts to the 
use and interpretation of these methods, and we explain how the choice of different 
parameter values by the user can affect the accuracy and precision of the inferences. 
Based on our survey of 100 PSMC studies and 30 MSMC studies, we describe how 
the two methods are used in practice. Readers of this article will become familiar with 
the principles, practice, and interpretation of the sequentially Markovian coalescent 
for inferring demographic history.
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sequences from small samples of individuals: the pairwise sequen-
tially Markovian coalescent (PSMC; Li & Durbin, 2011) and multi-
ple sequentially Markovian coalescent (MSMC; Schiffels & Durbin, 
2014). We focus on these methods because they are widely used, 
they share a common theoretical framework, and a large amount of 
work has been done on elucidating their strengths and weaknesses. 
Even as new methods of demographic inference are published, in-
terpreting the large number of studies that have already used PSMC 
and MSMC is difficult without a solid understanding of the assump-
tions and approximations made by their underlying models.

The PSMC method can be used to analyze unphased sequence 
data from a single diploid individual, whereas MSMC can use se-
quences from several individuals. The two methods are particularly 
useful when studying deeper population timescales and when there 
are very limited numbers of samples (Beichman et al., 2018; Spence, 
Steinrücken, Terhorst, & Song, 2018). For example, PSMC has been 
employed to great effect in studies of individual ancient samples, 
including those of an ancient horse (Orlando et al., 2013), an ancient 
wolf (Skoglund, Ersmark, Palkopoulou, & Dalén, 2015), and two 
woolly mammoths (Palkopoulou et al., 2015).

In addition to reconstructing demographic history, PSMC and 
MSMC have been used to infer the timing of population divergence 
and to estimate mutation rates from ancient genomes. However, 
various studies have demonstrated that inferences from the two 
methods can be sensitive to violations of the underlying assump-
tions (e.g., Mazet, Rodríguez, Grusea, Boitard, & Chikhi, 2016), and 
the methods do not offer an explicit framework for testing hypoth-
eses. As a consequence, the user needs some appreciation of the 
underlying biological theory and statistical methods to ensure that 
the results are interpreted appropriately. In this review, we give a 
brief description of coalescent theory, the mathematical framework 
behind demographic inference, before discussing how it is applied in 
PSMC and MSMC. We describe some of the key practical issues that 
arise when these two methods are applied to genomic data.

1.1 | Coalescent theory

Coalescent theory provides a statistical framework that relates 
the size of a population to the coalescence times in the genealogy 
of the sampled individuals (Hudson, 1983; Kingman, 1982; Tajima, 
1983). Coalescent models envision the evolutionary process running 
backwards in time: We start from the leaves of the genealogy, which 
represent the individuals that have been sampled in the data set. 
We then trace out their full evolutionary history by following their 
lineages back in time. Coalescence events occur whenever two line-
ages combine to become one ancestral lineage. If the population is 
panmictic (random mating), then all possible pairs of lineages have an 
equal probability of coalescing.

The rate of coalescence can tell us about population size because 
coalescence events are more likely to occur when the population 
is small. For example, if we select a few people at random from a 
small, isolated village, they are likely to share an ancestor in recent 

generations. If a few people are chosen at random from the entire 
human population, they are unlikely to be closely related; we would 
probably need to look much further into the past before we would 
find a coalescence event.

Coalescent theory makes this idea mathematically rigorous by 
providing formulae that relate the rate of coalescence to the effec-
tive population size. Thus, if we have a genealogy that shows when 
the coalescent events occurred, we can infer how the size of the 
population changed over time (Pybus, Rambaut, & Harvey, 2000). 

Box 1 Hidden Markov models

A hidden Markov model is a pair of stochastic processes, 
Xt and Yt, where Xt is the “hidden process” and cannot be 
directly observed, but Yt can. At each point t, Xt takes on 
one of N possible states according to some specified prob-
ability distribution. Because Xt is a Markov process, the 
state it takes on depends only on the state at Xt−1. After 
Xt has moved to its new state, the value of Yt is generated 
by a probability distribution that depends on the value that 
Xt takes on at that time. The values that Yt can take are 
typically referred to as the “observation symbols” of the 
process.
To create a hidden Markov model, we need to define the 
key ingredients of the process that we described above:
1. The possible states of Xt, qi, i∈{0, …, N}
2. The possible observation symbols vi, i∈

{
0,… ,M

}

3. A probability distribution, the “transition probabilities,” 
that describes how we move between the states of Xt: 
P(Xt+1=qj|Xt=qi).

4. A set of probability distributions, called the “emission 
probabilities,” that describe how the states of Xt gener-
ate the values of Yt. Each of these will be of the form 
bj (k)=P(Yt=vk|Xt=qj).

5. A probability distribution describing how the system 
looked when t = 1: P(qi|t=1).

In the case of the sequentially Markovian coalescent mod-
els, t indexes locations along the genome. The hidden 
states are characterized by the local genealogies at each 
locus. For PSMC, the possible states are the possible 
coalescence times of the two alleles. For MSMC, it is the 
coalescence time of the two alleles in the sample that 
coalesce first. The observation symbols are features of 
the genetic data. For PSMC, the data are partitioned into 
bins of 100 bp; we observe a 1 if a heterozygous locus 
occurred in that bin and a 0 otherwise. For MSMC, there 
are a few more observation symbols to account for the 
extra complexity introduced by multiple genomes. The 
emission probabilities are determined by the mutation 
rate and the transition probabilities by the recombina-
tion rate.
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Time periods with many coalescence events indicate a smaller pop-
ulation, and vice versa. A number of tools have been developed for 
inferring demographic history from the coalescence times in individ-
ual gene trees; these methods have been reviewed elsewhere (Ho & 
Shapiro, 2011).

The coalescent framework usually involves the assumption of 
neutral evolution. However, various forms of selection act across 
genomes, and these can affect specific mutations as well as any 
neutral variants that are linked (Maynard Smith & Haigh, 1974). 
Estimates of population size can be distorted by natural selection 
(Ewing & Jensen, 2016; Schrider, Shanku, & Kern, 2016). In par-
ticular, purifying selection is likely to be predominant and tends 
to remove genetic variation, which would lead to an apparent 
reduction in population size (Charlesworth, 1994; Charlesworth, 
Morgan, & Charlesworth, 1993). These potential impacts need to 
be borne in mind when using any methods of inference based on 
the coalescent, especially if the data set includes large sections of 
coding sequence.

1.2 | The sequentially Markovian coalescent

How can PSMC use coalescent theory to infer demographic history 
from a single genome, given that we need data from multiple coa-
lescence events that each requires two alleles? The answer is that 
each genome contains large numbers of loci, which can split apart 
from each other during recombination and so trace out distinct evo-
lutionary histories. By tracking the coalescence events between the 
two alleles at every locus, we can infer how many of them have oc-
curred across the genome within a given time interval. PSMC and 
MSMC use this information to reconstruct the effective population 
size through time, provided that we make some assumptions about 
the mutation rate.

The original coalescent theory did not provide a framework for 
efficiently estimating population sizes from individual genomes, so it 
required modification before it could be used to infer population-size 
history using the approach described above. Before explaining the 
theoretical advances that solved this problem, we should consider 
what sort of model would be useful for inference. Obviously, the 
model should be biologically reasonable. It should also be mathemat-
ically tractable, in the sense that the computation of the likelihood 
functions for parameters is feasible. One class of models that fit this 
criterion, and hence are used widely in biology, are hidden Markov 
models (Box 1; Rabiner, 1989; Zucchini, MacDonald, & Langrock, 
2016). In this framework, the data that we see are generated by a 
hidden background process. The process switches between a num-
ber of states, each of which has a specified probability of produc-
ing each of the observations. We cannot know with certainty what 
the background process is doing when we observe the data, but the 
observations provide probabilistic information about the process. 
Additionally, the background process must be Markovian, which 
means that the next state of the process depends only on the cur-
rent state.

Much of the power of hidden Markov models for inference is 
that an algorithm—the Baum–Welch algorithm—exists that allows us 
to compute estimates of all of the free parameters simultaneously, 
provided that we specify the underlying structure of the process and 
how the process relates to the observations (Zucchini et al., 2016). 
Thus, the problem of inference under the coalescent could be solved 
by finding a biologically accurate description of the coalescent with 
recombination as a hidden Markov model. This was achieved by a 
change in perspective. Instead of starting from extant samples and 
building the full genealogy by working backwards, we work our way 
along the genome (Wiuf & Hein, 1999). We start from one end of the 
genome and then generate a “local” genealogy for each locus by in-
corporating new information as we move along the genome and en-
counter recombination events (Marjoram & Wall, 2006; McVean & 
Cardin, 2005; Wiuf & Hein, 1999). In the language of hidden Markov 
models, the local genealogy is the background process that gener-
ates the data, whereas the sequences are the observations. This pro-
cess was named the sequentially Markovian coalescent (McVean & 
Cardin, 2005).

In PSMC, the local genealogy is completely characterized by the 
time to the most recent common ancestor of the two alleles, because 
there is only one possible tree topology for two leaves (Figure 1a). 
Analyzing multiple genomes is much more computationally challeng-
ing, but the MSMC simplifies this task by using only a subset of the 
local tree that describes the time to the most recent common an-
cestor of the two alleles that coalesce first at that locus (Figure 1b). 
The complexities associated with the analysis of multiple genomes 
have been addressed differently in other coalescent hidden Markov 
models (Dutheil, 2017).

2  | APPLIC ATIONS OF THE METHODS

2.1 | Reconstructing population sizes

The PSMC and MSMC methods were originally designed to infer 
past changes in effective population sizes, including the timing 
of expansions and bottlenecks. The output of each method is a 
plot showing how the effective size of the population to which 
that individual belonged has changed over time. PSMC and MSMC 
can combine information from much larger numbers of loci than is 
computationally feasible with tree-based methods such as skyline 
plots. For this reason, sequentially Markovian coalescent meth-
ods can probe deeper timescales, because the data are much more 
likely to include loci that have their most recent common ancestor 
far into the past. For example, application of the PSMC has been 
able to shed light on more than a million years of the demographic 
histories of modern humans and other great apes (Prado-Martinez 
et al., 2013). Although neither PSMC nor MSMC provides a for-
mal framework for testing specific hypotheses of the causes of 
population-size changes, bootstrap replicates can be used to ap-
proximate a confidence interval around the estimate of effective 
population size (Li & Durbin, 2011).
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In principle, MSMC has superseded PSMC, even when only a sin-
gle diploid genome is available for analysis. MSMC estimates the re-
combination rate correctly in circumstances where PSMC fails to do 
so (Schiffels & Durbin, 2014). When multiple genomes are available, 
MSMC has better power to resolve recent changes in effective pop-
ulation size, because adding alleles increases the chance that there 
will be a coalescence event in the recent past. In analyses of human 
genomes, MSMC is informative for events that occurred as recently 
as 2,000 years ago (Schiffels & Durbin, 2014), whereas PSMC does 
not reliably resolve changes in effective population size that had oc-
curred within the last 20,000 years (Li & Durbin, 2011).

There are limits to how far in the past the sequentially Markovian 
coalescent can make reliable estimates of demography. For the mod-
els to infer the population size in a given time period, the genome 
must have loci at which alleles coalesced in that period. However, 
coalescent theory shows that alleles with deep coalescences are rel-
atively rare (Takahata & Nei, 1985). As we look further back in the 
past, it becomes increasingly unlikely that we have any data on the 
coalescence rate. Consequently, the inference of coalescence rates, 
and hence population sizes, becomes much noisier for the deep de-
mographic past.

A critical consideration when using the PSMC and MSMC is that 
their output cannot always reliably be interpreted as plots of popu-
lation-size changes. Recall from our description of the model that it 
estimates the rate of coalescence at each point in time. Coalescent 
theory shows that the inverse of this rate, sometimes called the 
inverse instantaneous coalescence rate (Mazet et al., 2016), can 
be used as a proxy for population size under certain assumptions. 
However, if the study population does not meet these assumptions, 
then other factors can affect the coalescence rate and must be 
taken into account when we attempt to interpret apparent changes 
in population size (Chikhi et al., 2018; Mazet, Rodríguez, & Chikhi, 
2015; Mazet et al., 2016). For example, the relationship between 

coalescence times and population sizes can be confounded by natu-
ral selection and by nonrandom mating (Mazet et al., 2016).

One intuitive example of nonrandom mating is the n-island 
model, where n panmictic populations are separated except for 
some fixed rate of migration (Wright, 1931). Because two alleles 
cannot coalesce while they are in different islands, the expected 
coalescence time is determined by the number of islands and the 
migration rate between them, as well as by the population size 
(Mazet et al., 2016; Pannell, 2003). In particular, when the migra-
tion rate between islands is low, the coalescent effective popu-
lation size—the parameter inferred by sequential methods—can 
be much greater than the true population size (Li & Durbin, 2011; 
Nei & Takahata, 1993). Thus, peaks on the demographic plot might 
correspond to periods of increased population structure rather 
than increased population size.

The assumption of panmixia can also be violated by inbreeding, 
which increases the rate of coalescence and hence lowers the effec-
tive population size. It should manifest in the genome as long runs 
of homozygous sequence (Ceballos, Joshi, Clark, Ramsay, & Wilson, 
2018). One strategy for testing whether inbreeding has affected de-
mographic inference is to identify and remove such runs of homozy-
gosity, then repeating the analysis and checking for any changes in 
the inferences (Freedman et al., 2014).

In general, there is great difficulty in differentiating between the 
changes that are attributable to shifts in population size and those that 
are caused by changes to other demographic parameters (such as in-
creased migration or a strengthening of population structure). Changes 
in some demographic parameters can alter the demographic curve 
in ways that are not well localized to the point at which the changes 
occurred. For example, because the migration rate is changed instan-
taneously in a constant-sized n-island population, the demographic 
curve rises and falls over many thousands of generations (Mazet et al., 
2016). When many changes happen over a short space of time, they 

F I G U R E  1   The sequentially Markovian 
coalescent. The colored circles represent 
nucleotide states belonging to the alleles 
at each locus. Double gray lines denote 
recombination breakpoints, which 
separate the loci along the genome. The 
time to the most recent common ancestor 
of the two alleles at each locus is reflected 
in the local tree. (a) In PSMC, there are 
only two haplotypes. Thus, the topology 
of the local tree is fixed, but the time 
to the most recent common ancestor 
differs among loci. (b) In MSMC, there are 
multiple haplotypes. MSMC ignores most 
of the local tree topology, focusing only 
on the most recent coalescence event at 
each locus
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can interact in complex ways to produce the demographic plot, so it is 
difficult to attribute any feature of the plot to a specific change.

We do not know exactly what degree and type of structure will 
preclude the reliable interpretation of the inferences from PSMC and 
MSMC, but their use for highly structured populations is likely to be 
extremely misleading. Unfortunately, the impact of population struc-
ture cannot be assessed directly from the observed coalescence 
times. Even when the population size is constant but the coalescence 
time varies purely as a result of changes in population structure, we 
can always find a set of (false) population-size changes that would 
explain the observed coalescence times arbitrarily well (Mazet et 
al., 2016). Additionally, testing for population structure typically re-
quires data from many individuals, which might not be available when 
methods based on the sequentially Markovian coalescent are used.

Finally, there are reasons to believe that the sequentially 
Markovian coalescent might perform poorly on realistic data. For ex-
ample, when genetic data are produced by simulation under demo-
graphic models inferred by MSMC from human genomes, they fail to 
resemble the empirical data in important ways (Beichman, Phung, & 
Lohmueller, 2017). Other methods that use data from many individu-
als, such as δaδi (Gutenkunst, Hernandez, Williamson, & Bustamante, 
2009) and SMC++ (Terhorst, Kamm, & Song, 2017), perform sub-
stantially better in this regard. Concerningly, this problem appears to 
grow worse as larger numbers of genomes are used for the MSMC, 
so the problem cannot necessarily be overcome by adding more data.

Since the release of MSMC, new methods have been designed that 
expand on the framework provided by the sequentially Markovian co-
alescent (Dutheil, 2017; Spence et al., 2018). These methods can out-
perform PSMC and MSMC in certain ways. The SMC++ method allows 
much larger numbers of genomes to be used for inference than is com-
putationally possible with MSMC and does not require the genomes to 
be phased (Terhorst et al., 2017). SMC++ is more accurate than MSMC, 
especially for population sizes in the recent past and when phasing 
error is present. Another method, MAGIC (minimal-assumption infer-
ence from population-genomic data; Weissman & Hallatschek, 2017), 
is conceptually similar to the sequentially Markovian coalescent in that 
it infers the coalescent history of a sample from the distribution of 
polymorphisms in the genome. However, it does not use an explicit 
model of coalescence and recombination and can estimate many 
different parameters from the empirical data. Given the different 
strengths and weaknesses of the various methods for inferring demo-
graphic history, best practice should include the use of multiple meth-
ods and comparison of their inferences (Spence et al., 2018).

2.2 | Studying changes in population structure

A common task in population genetics is to infer the timing of diver-
gence between closely related populations or species. One method 
that can be used for this purpose is the multispecies coalescent (e.g., 
Ogilvie, Bouckaert, & Drummond, 2017). However, this method 
requires data from multiple individuals per species and is not com-
putationally feasible for data sets comprising large numbers of loci. 

Both PSMC and MSMC can be used to infer divergence times while 
incorporating information from whole genomes.

Although it is not an intended use of the method, PSMC can be 
adapted to identify the point at which gene flow ceased between 
a pair of populations (Cahill, Soares, Green, & Shapiro, 2016; Li & 
Durbin, 2011). A simple approach is to compare PSMC plots ob-
tained from representatives of the two populations or species. The 
point at which their plots become identical indicates when they rep-
resent the same ancestral population (Figure 2a).

An alternative PSMC-based approach uses a synthetic diploid 
genome that is constructed from phased or unphased haplotypes 
from the two populations or species. The synthetic genome is in-
tended to mimic that of an F1 hybrid and so the approach is known 
as hPSMC (Cahill et al., 2016). Coalescence between the two alleles 
at each locus can only occur in the ancestral population. Because the 
rate of coalescence drops to zero after the populations have become 
reproductively isolated from each other, the effective population 
size will then be inferred to be infinite (Figure 2a). This technique can 
only provide a maximum bound on the divergence time, because it 
is possible that the populations diverged later than the most recent 
coalescence event. On the other hand, the estimated timing of diver-
gence can be misled if the populations have not achieved complete 
reproductive isolation. Given the sensitivity of hPSMC to any gene 
flow that has occurred after the divergence between the two popu-
lations, the method is more appropriately used to date the cessation 
of gene flow rather than population divergence (Cahill et al., 2016).

Multiple sequentially Markovian coalescent tends to perform 
better across a range of population divergence scenarios (Zhou & 
Teo, 2016) and can be used to provide a more complete picture of 
how gene flow between populations has changed through time. If 
we know which samples came from which populations, MSMC can 
calculate the cross-coalescence rate between each pair of popula-
tions, as well as the coalescence rate within each population (e.g., 
Fan et al., 2019; Liang et al., 2019). The ratio of these terms will grow 
or shrink depending on the amount of gene flow between subpop-
ulations: When migration between populations is high for some pe-
riod of time, the cross-coalescence rate between populations should 
increase gradually during that interval as the populations come to 
share more alleles (Schiffels & Durbin, 2014).

2.3 | Estimating mutation rate

The PSMC framework has been used to estimate mutation rates 
from genome sequences (e.g., Fu et al., 2014; Palkopoulou et 
al., 2015; Skoglund et al., 2015). The technique requires two se-
quences that have distinct ages and that have been sampled from 
the same population. Given their shared demographic history, the 
two genomes should yield very similar plots of effective popu-
lation size. However, the two plots will be offset along the time 
axis because of the difference in sampling times (Figure 2b). The 
mutation rate can be estimated by finding the number of muta-
tions that need to be added to the ancient sequences in order to 
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superimpose the two plots, then dividing this by the difference in 
the ages of the two samples. One can do this numerically by simply 
adding mutations to the older genome until its demographic plot 
coincides with that of the younger genome, but the estimation can 
be performed more rigorously by using a maximum likelihood ap-
proach (Fu et al., 2014).

Inferring mutation rates using PSMC plots should only be done 
when an estimate of the mutation rate for the target species is 
otherwise unavailable. The use of demographic plots for this pur-
pose is subject to a host of confounding factors, including those 
that affect the standard use of PSMC to infer population-size 
history. Other more generally accepted methods for estimating 
mutation rates, particularly those based on genome sequences 
from parent-offspring sets (e.g., Besenbacher, Hvilsom, Marques-
Bonet, Mailund, & Schierup, 2019; Roach et al., 2010) or muta-
tion-accumulation lines (e.g., Ossowski et al., 2010), are likely to 
be substantially more accurate.

3  | DATA REQUIREMENTS

3.1 | Genome sequences

Both PSMC and MSMC require data in the form of one or more ge-
nome sequences aligned to a reference sequence from the target 
species or from a closely related species. Using a reference sequence 
that is too dissimilar can reduce the accuracy of heterozygote calls 
(Günther & Nettelblad, 2019). Prior to analysis, genome data should 
be filtered to remove sites that have a high probability of being called 
inaccurately (Li, 2014). Failing to filter appropriately, especially when 
coverage is low, can lead to the demographic signal being obscured 
(Nadachowska-Brzyska, Burri, Smeds, & Ellegren, 2016).

The PSMC method requires a diploid consensus genome and 
does not require that haplotypes are phased, because it only needs 
to know the nucleotide positions that are heterozygous. The ge-
nome must be sequenced to a sufficiently high degree of coverage 

F I G U R E  2   Illustrations of two different uses of PSMC and MSMC methods. (a) Dating speciation events using the PSMC (Li & Durbin, 
2011). The solid lines represent PSMC plots from the genomes of two modern humans: Yoruba (red) and Chinese (blue). Looking backwards 
in time, the plots become identical from about 100–120 thousand years ago, indicating a shared population history. The dotted line shows 
a PSMC plot from a hybrid genome constructed from the X chromosomes of the Yoruba and Chinese genomes, scaled by 0.75. Looking 
forwards in time, the infinite population size at about 20 thousand years ago suggests cessation of gene flow between the two populations. 
(b) Estimating the mutation rate using PSMC (Fu et al., 2014). The two thick lines are plots for a 45,000-year-old modern human from Ust'-
Ishim in western Siberia, either uncorrected (red) or shifted horizontally (blue) to align with the plots from present-day non-African modern 
humans (thin gray lines). The magnitude of the horizontal shift indicates the number of mutations that have occurred in 45,000 years, 
providing a means of estimating the mutation rate
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that heterozygous sites can be called accurately; one estimate is 
that 18-fold coverage and <25% missing data are required for re-
liable inference (Nadachowska-Brzyska et al., 2016). PSMC might 
still be able to recover the essential features of a demographic his-
tory at lower coverage, but the shape of the graph tends to be flat-
tened so that estimates of the effective population size might not 
be accurate. The effect of low coverage is worse when the amount 
of data is small, as when the analysis is based on only a subset of 
the genome.

Whole genome sequences should be used in principle, but infor-
mative PSMC plots can be obtained from individual chromosomes 
from the human genome (Li & Durbin, 2011). A recent simulation 
study also showed that PSMC can obtain accurate estimates even 
when using the products of short-read sequencing assembled into 
short scaffolds (Gower et al., 2018). If a subset of the genome is 
chosen, coding DNA should not constitute the majority of the data 
set because of the confounding effects of selection on demographic 
inference. Excluding sequences that are close to coding regions or 
that have low recombination rates can also help to mitigate the con-
founding impacts of selection (Schrider et al., 2016).

The MSMC method was designed to use data from multiple hap-
lotypes but can use as few as two, in which case it reduces to a vari-
ant of PSMC (referred to as PSMC'). There is no upper bound on the 
number of haplotypes that can be used, but the method is feasible 
for at least eight haplotypes and the computational complexity in-
creases rapidly as more are added (Schiffels & Durbin, 2014). When 
there are too many haplotypes to be used efficiently in MSMC, 
other methods can handle data sets comprising larger numbers of 
genomes (e.g., SMC++ and MAGIC; Terhorst et al., 2017; Weissman 
& Hallatschek, 2017).

In principle, MSMC requires that the sequence data are phased 
(i.e., haplotypes are specified), unless working with data from a 
parent–parent–offspring trio or from a single diploid genome. 
However, the importance of the phasing depends on the question 
that one seeks to answer: MSMC performs reasonably well when 
inferring the shape of a demographic curve from unphased data, 
but there is a substantial reduction in its resolution of the recent 
past and its ability to infer population divergence times (Schiffels 
& Durbin, 2014).

Where phasing is performed, it needs to be highly accurate be-
cause even a relatively small rate of phasing error can seriously mis-
lead the effective population sizes estimated by MSMC, especially 
for the recent past (Song, Sliwerska, Emery, & Kidd, 2017; Terhorst 
et al., 2017). This can be problematic for MSMC, because phasing to 
the required level of accuracy will typically need a larger sample size 
or access to an external reference panel of haplotype information 
(Browning & Browning, 2011). When robust phasing is not possible, 
using unphased data might be a better option if one is only interested 
in the qualitative shape of the demographic curve. Alternatively, one 
can use a phasing-invariant method of demographic inference, such 
as SMC++, if the goal is to obtain precise estimates of population size 
or to explore demographic events from the recent past (Browning & 
Browning, 2011; Terhorst et al., 2017).

3.2 | Restriction-site-associated DNA data

Both PSMC and MSMC can be used with restriction site-associ-
ated DNA (RAD) data (Liu & Hansen, 2017). RAD sequencing is a 
reduced-representation method that gives the sequences of regions 
flanking the cutting sites of a chosen restriction enzyme (Miller, 
Dunham, Amores, Cresko, & Johnson, 2007). The smaller the frac-
tion of the genome that this subset covers, the greater the reduction 
in accuracy and increase in variance. As with inferences from other 
reduced data sets, the demographic curve obtained from RAD data 
is flatter, with peaks and troughs that are less pronounced (Liu & 
Hansen, 2017).

Based on evidence from simulations, a rule of thumb is that 
PSMC can recover the broad shape of the demographic curve if 
μp/r > 0.5, where μ is the mutation rate, p is the fraction of the ge-
nome covered by the RAD sequencing, and r is the recombination 
rate (Liu & Hansen, 2017). In practice, when RAD data are used for 
demographic inference, the read length and sampling density should 
be maximized.

4  | PR AC TIC AL CONSIDER ATIONS

4.1 | Parameter selection

In PSMC and MSMC analyses, a number of settings need to be speci-
fied by the user. The two methods assume that the history of the 
population is divided into discrete time intervals on which the popu-
lation size is constant. The user must specify the length and number 
of these intervals; a poor choice of intervals can lead to over- or un-
derfitting of the model. Repeating the analysis using different num-
bers of time intervals can show whether there is any impact on the 
inferences (Nadachowska-Brzyska et al., 2016).

Intuitively, splitting a time period into many intervals can lead 
to greater stochastic error in the population-size estimate for each 
time interval, because there will be higher variance in the number of 
coalescent events occurring in smaller intervals. In addition, because 
coalescent events are rarer when the population is large, model over-
fit will be most pronounced at the “peaks” of the plot. One way to 
reduce the impact of this problem is to check that a sufficiently large 
number of coalescent events fall into each interval. This threshold is 
somewhat subjective, but a minimum of 20 events per interval has 
been suggested (Li & Durbin, 2011). To choose an appropriate num-
ber of time intervals, it might be useful to begin with some number of 
evenly spaced intervals. After running the analysis, one can identify 
sections of the plot with too few coalescent events and reduce the 
number of intervals in those periods before repeating the analysis.

The above argument also shows a weakness of the PSMC and 
MSMC methods. We cannot distinguish between the noise induced 
by overfitting and the signals of genuine changes in population size. 
Thus, one should be very cautious in interpreting changes in effec-
tive population size on small timescales, especially around peaks of 
the demographic plot. Creating bootstrap replicates of the analysis 
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can provide an estimate of the variance in the estimated effective 
population size (Li & Durbin, 2011).

Both PSMC and MSMC also require the user to supply an initial 
value for the ratio of the mutation rate and recombination rate. In the-
ory, this should not affect the outcome of the analysis because it only 
provides a starting value for the algorithm. Simulations have shown that 
even when the analysis fails to estimate this value, there are no nega-
tive impacts on the estimates of population sizes (Li & Durbin, 2011).

4.2 | Scaling the graphs

Analyses using PSMC and MSMC give plots of effective population 
sizes that are scaled to the per-generation mutation rate. To allow a 
time axis to be added to the plot, the mutation rate (per generation) 
and generation interval need to be specified. Generation interval can 
be difficult to define precisely, even for well-studied taxa such as 
modern humans (Scally & Durbin, 2012). Reliable estimates of muta-
tion rates are not easily obtained, because phylogenetic estimates 
of long-term evolutionary rates are not necessarily applicable at the 
population level (Ho, Duchêne, Molak, & Shapiro, 2015); rates of 
spontaneous mutation have been inferred for a limited number of 
eukaryote species (Besenbacher et al., 2019; Smeds, Qvarnström, & 
Ellegren, 2016). If estimates of the mutation rate are unavailable for 
the target species, common practice has been to employ the phylo-
genetically closest estimate (see Section 5). An alternative approach 

is to derive an approximation of the mutation rate based on its co-
variation with other biological quantities, such as genome size and 
population size (Lynch et al., 2016). This method has been used in a 
number of PSMC and MSMC studies (e.g., Hall et al., 2017).

Using an incorrect value for either the mutation rate or gener-
ation interval does not affect the qualitative shape of the plot, and 
so will not affect analyses that do not require the precise dating of 
demographic events. A higher mutation rate will cause the estimated 
population size to be scaled down linearly and will shift the curve 
closer to the present, whereas a longer generation interval will scale 
the population size down (Nadachowska-Brzyska et al., 2016). If pre-
cise dating is required, it might be best to run the analyses under 
a plausible range of mutation rates, to provide upper and lower 
bounds for the dating of demographic events.

5  | USAGE SURVE Y

To present a picture of how PSMC and MSMC are used in scientific 
studies, we surveyed their usage in peer-reviewed journal articles. 
We randomly sampled 100 of the ~200 studies that have performed 
PSMC analysis and 30 of the ~60 studies that have performed 
MSMC analysis. We identified these studies by scanning the ap-
proximately 1,400 papers that have cited the original descriptions 
of the two methods (Li & Durbin, 2011; Schiffels & Durbin, 2014), 
according to Google Scholar.

F I G U R E  3   Data from random samples of 100 studies that implemented the pairwise sequentially Markovian coalescent (PSMC) 
method and 30 studies that implemented the multiple sequentially Markovian coalescent (MSMC) method. (a) Taxonomic affiliations of the 
organisms studied. (b) Source of mutation rates used to scale the demographic plots. The choice of mutation rate affects the scale of the 
horizontal axis and the estimate of the effective population size, but does not affect the qualitative shape of the plot. For example, a higher 
mutation rate will cause the estimated population size to be scaled down linearly and will shift the curve closer to the present. Details of the 
130 studies surveyed are provided in Appendix S1 on Dryad (https ://doi.org/10.5061/dryad.0vt4b 8gv2)
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Among the 100 PSMC studies that we examined in detail 
(Figure 3a), the majority focused on the genomes of mammals (53%) 
and other vertebrates (28%). Although many of these studies in-
vestigated population structure and estimated rates of gene flow 
between subpopulations, these demographic features were very 
rarely taken into account during interpretation of the PSMC plots. 
Similarly, the potential confounding impacts of selection were some-
times acknowledged, but were not addressed explicitly. Among the 
30 MSMC studies that we examined in detail, there tended to be a 
greater focus on modern humans and plants (Figure 3a).

The vast majority of the PSMC and MSMC studies analyzed 
whole genome sequences, although some produced separate demo-
graphic plots for autosomes and sex chromosomes (e.g., Ekblom et 
al., 2018; Foote et al., 2016). Most studies did not provide explicit 
justification for the choice of discrete time intervals, which was 
usually the default number of 64 based on the initial application of 
PSMC to human genomes (Li & Durbin, 2011). Among the 30 MSMC 
studies, 11 analyzed data sets with two haplotypes (equivalent to 
the PSMC) and 11 analyzed data sets with eight haplotypes.

The PSMC and MSMC plots were usually scaled according to mu-
tation rates that had been estimated in previous studies (Figure 3b). 
Many of these mutation rates were estimated on phylogenetic 
scales, but they were more often obtained from pedigree-based 
analyses. Estimates of human mutation rates were applied to PSMC 
and MSMC plots in 49 studies, although only 24 of these involved 
analyses of humans or other primates. Studies of birds, flies, lepi-
dopterans, and plants tended to apply mutation rates estimated 
from Ficedula (Nadachowska-Brzyska et al., 2016), Drosophila 
(Haag-Liautard et al., 2007), Heliconius (Keightley et al., 2015), and 
Arabidopsis (Ossowski et al., 2010), respectively; together these ac-
counted for 11% of the studies surveyed. Even in these cases, how-
ever, the scaling of the demographic plots can be severely misled if 
there is substantial rate heterogeneity among species. Only 7% of 
studies produced novel estimates of short-term mutation rates for 
the target species, for example using analyses of parent–parent–off-
spring trios (Künstner et al., 2016; Martin et al., 2018). Our usage 
survey highlights the challenges in identifying suitable estimates 
of mutation rates for rescaling the demographic plots produced by 
PSMC and MSMC.

6  | CONCLUSIONS

Sequentially Markovian coalescent methods provide powerful 
means of inferring demographic histories from genomic data. They 
are particularly useful when the genome sequences are restricted to 
only a few individuals, or when the aim is to probe timescales that 
are inaccessible to other methods (Beichman et al., 2018). However, 
there are substantial challenges in interpreting the output of PSMC 
and MSMC, because testing the assumptions of the underlying 
models usually requires more data than are available when these 
methods are used. Nevertheless, by being aware of the underlying 
theoretical framework and identifying the assumptions made in the 

interpretation of the results, researchers can glean valuable demo-
graphic information that might otherwise be unavailable.
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